Aujourd’hui, l’équipe CoRoT annonce la découverte d’une naine brune et de six nouvelles exoplanètes aux caractéristiques très variées. CoRoT, satellite de l’Agence spatiale française (CNES) (1), permet de découvrir des exoplanètes depuis l’espace, par la détection de leur passage devant leur étoile. L’observation de ces transits est relayée par des observations au sol, notamment avec les spectrographes HARPS de l’ESO et Sophie de l’INSU-CNRS: les astronomes obtiennent alors une mesure précise de la taille, de la masse et de l’orbite de ces nouvelles planètes, sans les voir directement. Elles sont ainsi les seules à permettre d’obtenir les informations les plus complètes sur leur nature et les modes de formation et d’évolution de ces nouveaux mondes.
« Chaque nouvelle découverte d’un système planétaire extrasolaire bouscule un peu plus les modèles théoriques expliquant la formation et l’évolution de ces systèmes. Plus nous connaîtrons de systèmes différents, plus nous pourrons étendre notre compréhension des processus réellement à l’œuvre, » déclare Magali Deleuil, chercheuse au Laboratoire d’Astrophysique de Marseille (LAM), responsable du programme exoplanètes de CoRoT.
CoRoT-8b : la plus petite de la série
C’est une planète de taille très modeste parmi les planètes en transit connues. Elle mesure 0,7 fois la taille de Saturne et pèse 0,7 fois sa masse. Sa structure interne est comparable à celles des planètes géantes de glace, comme Neptune et Uranus dans le système solaire. C’est la plus petite planète découverte par l’équipe CoRoT après la première super-Terre en transit, CoRoT-7b.
CoRoT-15b : la naine brune
CoRoT-15b a une masse de 60 fois celle de Jupiter pour un rayon à peine plus grand et donc une densité considérable, près de 40 fois celle de Jupiter. Elle est considérée par les chercheurs comme une naine brune, c’est à dire un objet intermédiaire entre une planète géante et une étoile. Les naines brunes sont beaucoup plus rares que les planètes, ce qui rend sa découverte passionnante.
CoRoT-10b : une géante à l’orbite très allongée
Pendant son « année » orbitale, qui dure 13 jours, cette planète s’approche puis s’éloigne de son étoile au point que l’énergie qu’elle en reçoit varie d’un facteur dix en fonction de son éloignement. La température de la planète varierait alors de 250 à 600°C en quelques jours.
CoRoT-11b : une géante autour d’une étoile en rotation rapide
L’étoile autour de laquelle orbite CoRoT-11b tourne très vite sur elle-même, en seulement 40 heures -c’est encore moins que la période de révolution de la planète qui est de 3 jours. Par comparaison, notre Soleil tourne sur lui même en 26 jours. La rotation extrême de l’étoile rend d’ailleurs la détection de la planète très difficile avec HARPS.
CoRoT-12b, CoRoT-13b et CoRoT-14b : 3 planètes géantes proches de leur étoile, mais avec des propriétés très différentes. CoRoT-13b a une taille plus modeste que celle de Jupiter mais sa densité est deux fois plus importante, ce qui s’explique probablement par la présence d’un noyau massif. Avec un rayon 16 fois plus grand que celui de la Terre, CoRoT-12b quant à elle, appartient à la famille des planètes gazeuses dilatées, c’est-à-dire plus grosses que Jupiter (11 fois la Terre). En tournant à très courte distance de leur étoile, ces planètes en reçoivent un intense rayonnement, qui retarde leur contraction et explique leur taille anormalement grande. Paradoxalement, CoRoT-14b, qui est encore plus proche de son étoile, a une taille similaire à Jupiter. Sa masse est 7 fois et demi celle de Jupiter, ce qui en fait une autre planète extrêmement dense (6 fois plus que Jupiter) et la seconde planète très massive et très proche de son étoile.
La détection des exoplanètes avec CoRoT par la méthode des transits (voir encadré 1) (détection de l’infime variation de l’intensité lumineuse de l’étoile lorsque la planète passe devant le disque stellaire) est une longue entreprise, avec ses observations complémentaires (voir encadré 2), mais elle présente un avantage considérable car elle permet d’obtenir le diamètre et la masse de la planète, et donc sa densité, éléments indispensables pour bien comprendre la nature des planètes détectées. Les caractéristiques de l’orbite sont aussi précisément décrites. Depuis quinze ans, 450 exoplanètes ont été découvertes; seules 82 d’entre elles présentent un transit, dont 15 ont été mises en évidence par le satellite CoRoT.
Encadré 1: Détecter des planètes avec CoRoT : une analyse minutieuse
Depuis février 2007, le satellite CoRoT observe chaque année environ 80 000 étoiles. La variation de l’éclat d’une étoile au cours du temps, ou « courbe de lumière » dans le jargon des astronomes, est enregistrée sur une durée de 20 à 150 jours. Une équipe scientifique y recherche alors une série de micro-éclipses (ou transits) imputable au passage répété d’une planète devant son étoile. « Nous avons choisi de travailler en parallèle, avec jusqu’à 8 chercheurs qui analysent les données indépendamment et qui comparent ensuite leurs résultats ; c’est plus long, mais cela permet d’accroître le nombre de découvertes ! » précise Pascal Bordé de l’IAS, responsable de cette équipe chargée d’analyser les courbes de lumière de CoRoT.. Chaque année, cette équipe isole jusqu’à un millier de courbes de lumière présentant des transits, parmi lesquels plus d’une centaine sont potentiellement le fait de planètes… Mais une fois ces « planètes potentielles » identifiées, la tâche est loin d’être terminée.
Encadré 2 : Le support nécessaire des télescopes terrestres
Les planètes ne sont clairement identifiées qu’une fois que tous les autres scénarios possibles ont été écartés : « Entre la détection de transits par CoRoT et l’annonce officielle de la découverte d’une nouvelle planète se cache une série d’observations complémentaires à l’aide de télescopes au sol. Réaliser et analyser ces observations peut nécessiter jusqu’à deux années entières !» explique Claire Moutou, du LAM, chargée de la coordination du programme d’observations complémentaires. Les chercheurs impliqués dans CoRoT doivent donc passer au crible de leurs télescopes terrestres la centaine de candidats détectés annuellement. Une quinzaine de télescopes1 de par le monde est utilisée pour cette tâche. Il s’agit d’abord de confirmer la position de l’étoile présentant les transits, puis d’établir que le corps qui cause ces transits est bien une planète et non une autre étoile. Cette vérification peut se faire en mesurant la masse de ce corps.
C’est un processus long, car les étoiles ne sont visibles que 5 mois par an, mais la récompense finale est de taille ! Car sans pouvoir voir directement ces planètes lointaines, les chercheurs savent mesurer leur densité -seulement pour celles qui transitent- et commencent à comprendre leurs caractéristiques.
Notes :
(1) Le programme exoplanète de CoRoT bénéficie de l’appui de plusieurs télescopes terrestres: Le Télescope Canada France Hawaï (INSU-CNRS, CNRC, U. Hawaï) ; les Télescopes IAC-80 et ESA OGS de l’Observatoire du Teide (Espagne); le télescope Suisse Euler de 1,2m à l’Observatoire La Silla de l’ESO (Chili) ; les télescopes 0,46 et 1 m de l’Observatoire Wise (Israël); le télescope TEST de l’Observatoire de Tautenburg (Allemagne) ; les télescopes BEST et BEST 2 du Deutsche Luft und Raumfahrt Gesellschaft (DLR) ; le télescope KECK de 10m avec le spectrographe HIRES (Hawaï-USA) ; le télescope de 3,6m équipé du spectrographe HARPS à l’Observatoire La Silla de l’ESO (Chili) ; les télescopes de 8,2m du Very Large Telescope avec le spectrographe UVES à l’Observatoire Paranal de l’ESO (Chili) ; les télescopes 1,93m avec le spectrographe SOPHIE et 1,2 m de l’Observatoire de Haute Provence (France).
Source: Communiqué de presse du CNRS
Laisser un commentaire