Pour la première fois, des astronomes ont mesuré une super-tempête dans l’atmosphère d’une exoplanète, le très étudié Jupiter chaud HD209458b. Les observations de très grande précision du monoxyde de carbone montrent que ce gaz est en train de s’écouler à très grande vitesse du côté jour, extrêmement chaud de cette planète, vers son côté non éclairé, plus froid. Ces observations ont également permis une autre « première » très intéressante : la mesure de la vitesse orbitale de l’exoplanète elle-même, permettant ainsi de déterminer sa masse de manière directe.
Ce résultat est publié cette semaine dans le journal Nature.
« HD209458b n’est résolument pas un endroit pour les âmes sensibles. En étudiant le gaz toxique de monoxyde de carbone avec une très grande précision, nous avons trouvé des signes indiquant la présence de vents puissants, soufflant à une vitesse allant de 5 000 à 10 000 Km/heure, » déclare Ignas Snellen, le responsable de cette équipe d’astronomes.
HD209458b est une exoplanète dont la masse correspond à 60% de celle de Jupiter. Elle est en orbite autour d’une étoile semblable au Soleil, située à 150 années-lumière de la Terre, dans la constellation de Pégase. Elle tourne autour de son étoile à une distance de seulement un vingtième de la distance Terre-Soleil. Cette planète est donc chauffée de manière intense par son étoile et sa température de surface atteint 1 000 degrés Celsius de son côté chaud. Mais, comme c’est toujours la même face de la planète qui est exposée au rayonnement de son étoile, elle a un côté très chaud alors que l’autre est beaucoup plus froide. « Sur Terre, les grandes différences de température conduisent inévitablement à des vents très violents et comme le révèlent nos nouvelles mesures, la situation n’est pas différente sur HD209458b, » précise Simon Albrecht, un des membres de l’équipe.
HD209458b a été la première exoplanète à transit détectée : tous les 3,5 jours, la planète passe devant son étoile, bloquant une petite partie de sa lumière durant une période de trois heures. Pendant ces transits, une infime partie de la lumière de l’étoile filtre à travers l’atmosphère de la planète, laissant une empreinte. Une équipe d’astronomes venant de l’Université de Leiden, du Netherlands Institute for Space Research (SRON) et du MIT aux Etats-Unis a utilisé le VLT de l’ESO et son puissant spectrographe CRIRES pour détecter et analyser cette « empreinte digitale » à peine visible en observant la planète pendant cinq heures, alors qu’elle passait devant son étoile. « CRIRES est le seul instrument au monde capable de fournir des spectres suffisamment précis pour déterminer la position de la raie du monoxyde de carbone avec une précision d’un millième de pourcent » précise Remco de Kok, un autre membre de l’équipe. « Cette grande précision nous a permis de mesurer la vitesse du gaz de monoxyde de carbone pour la première fois en utilisant l’effet Doppler. »
Ces astronomes ont réalisé plusieurs autres « premières ». Ils ont mesuré de manière directe la vitesse de l’exoplanète le long de son orbite autour de son étoile. « En général, la masse d’une exoplanète est déterminée en mesurant les oscillations de l’étoile et en supposant une certaine masse théorique pour cette étoile. Dans ce cas, nous avons aussi été capables de mesurer le mouvement de la planète et nous avons ainsi pu déterminer à la fois la masse de l’étoile et celle de la planète, » dit Ernst de Mooij, un des co-auteurs de l’article.
Pour la première fois également, ils ont mesuré la quantité de carbone présent dans l’atmosphère de cette planète. « Il semble que HD209458b soit en fait aussi riche en carbone que le sont Jupiter et Saturne. Cela pourrait indiquer qu’elle s’est formée de la même manière » dit Ignas Snellen. « Dans le futur, les astronomes devraient être capables d’utiliser ce type d’observations pour étudier l’atmosphère de planètes semblables à la Terre et pour déterminer si la vie existe aussi ailleurs dans l’Univers. »
Plus d’informations
Cette recherche a été présentée dans un article publié cette semaine dans le journal Nature : « The orbital motion, absolute mass, and high-altitude winds of exoplanet HD209458b hh », by I. Snellen et al.
L’équipe est composée d’Ignas A. G. Snellen et Ernst J. W. de Mooij, (Leiden Observatory, Pays Bas), de Remco J. de Kok (SRON, Utrecht, Pays Bas) et de Simon Albrecht (Massachusetts Institute of Technology, USA).
L’ESO – l’Observatoire Européen Austral – est la première organisation intergouvernementale pour l’astronomie en Europe et l’observatoire astronomique le plus productif au monde. L’ESO est soutenu par 14 pays : l’Allemagne, l’Autriche, la Belgique, le Danemark, l’Espagne, la Finlande, la France, l’Italie, les Pays-Bas, le Portugal, la République Tchèque, le Royaume-Uni, la Suède et la Suisse. L’ESO conduit d’ambitieux programmes pour la conception, la construction et la gestion de puissants équipements pour l’astronomie au sol qui permettent aux astronomes de faire d’importantes découvertes scientifiques. L’ESO joue également un rôle de leader dans la promotion et l’organisation de la coopération dans le domaine de la recherche en astronomie. L’ESO gère trois sites d’observation uniques, de classe internationale, au Chili : La Silla, Paranal et Chajnantor. À Paranal, l’ESO exploite le VLT « Very Large Telescope », l’observatoire astronomique observant dans le visible le plus avancé au monde et VISTA, le plus grand télescope pour les grands relevés. L’ESO est le partenaire européen d’ALMA, un télescope astronomique révolutionnaire. ALMA est le plus grand projet astronomique en cours de réalisation. L’ESO est actuellement en train de programmer la réalisation d’un télescope européen géant – l’E-ELT- qui disposera d’un miroir primaire de 42 mètres de diamètre et observera dans le visible et le proche infrarouge. L’E-ELT sera « l’œil tourné vers le ciel » le plus grand au monde.
Liens
- Article scientifique
- Plus d’informations : Exoplanet Media kit
Source: ESO
Laisser un commentaire